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Abstract. We present the generalization of the minimal model for surface flows of granular mixtures,
proposed by Boutreux and de Gennes [J. Phys. I France 6, 1295 (1996)]. The minimal model was valid
for grains differing only in their surface properties. The present model also takes into account differences
in the size of the grains. We apply the model to study segregation in two-dimensional silos of mixtures of
grains differing in size and/or surface properties. When the difference in size is small, the model predicts
that a continuous segregation appears in the static phase during the filling of a silo. When the difference in
size is wide, we take into account the segregation of the grains in the rolling phase, and the model predicts
complete segregation and stratification in agreement with experimental observations.

PACS. 83.70.Fn Granular solids — 83.10.Pp Particle dynamics — 47.55.Kf Multiphase and particle-laden

flows

1 Introduction

Segregation of mixtures of grains is commonly observed
in granular materials that are poured, vibrated, or ro-
tated [1-19]. This phenomenon has great importance in
industrial processes. The simplest way to observe segrega-
tion is to pour a mixture of grains of different sizes onto
a heap; one obtains a heap with the large grains near the
bottom and the small grains near the top [20-25].

The mixture can also be poured in a two-dimensional
silo made up of two vertical plates separated by a gap
of approximately 5 mm (a granular Hele-Shaw cell), as
studied recently by Makse et al. [26-29]. Different forms
of segregation are observed when the grains differ both in
their size and their surface properties (shape, roughness,
stickiness). When the grains do not differ much in size,
the larger or the smoother grains stop preferentially at the
bottom of the slope, and the smaller or the rougher at the
top of the slope. This segregation is limited since grains of
both species remain present everywhere; this phenomenon
is called continuous segregation.

When the grains have a wide difference in size, seg-
regation is stronger and appears in two different ways.
When the large grains are smoother than the small ones,
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a complete segregation is observed, where all large grains
stop near the bottom of the slope, and all small grains
stop near the top. When the large grains are rougher than
the small grains, a spectacular stratification is obtained,
where the grains deposit in alternating layers of different
species, parallel to the sandpile surface.

Theoretical studies of surface flows of grains were trig-
gered by the works of Bouchaud, Cates, R. Prakash, and
Edwards (BCRE) [30,31] and Mehta and collaborators
[32]. BCRE proposed a set of coupled equations to de-
scribe granular flows in one species sandpiles. Boutreux
and de Gennes (BdG) [33,34] generalized the BCRE equa-
tions in order to describe granular mixtures composed of
two species. They proposed a theoretical formalism, and
a minimal model describing the case of grains with dif-
ferent surface properties but equal size. In this case, BdG
found a power law behavior of the concentrations which
explains the continuous segregation. Since the minimal
model does not take into account the size difference be-
tween the grains, Boutreux has treated the important case
where the grains differ only in size, in a second article [35,
36] of the series started by BdG [34].

In the present article, the third and last one of the
series, we treat the general case of the canonical model,
by describing different examples where the grains differ in
size and/or surface properties. We first assume that the
two species do not differ much in size. We then consider
that there is no segregation inside the rolling phase, which
is homogeneous in the vertical direction. In this case,
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Fig. 1. Diagram showing the variables used to describe the
granular flow of mixtures in a two-dimensional silo.

we show that the canonical model predicts continuous seg-
regation (in agreement with experiments) with a power
law behavior of the concentrations.

In the last part of the article, we consider the case
in which the two species have a wide difference in size.
We argue that in this case segregation probably occurs
directly inside the rolling phase; due to percolation of the
small grains, the small grains fall through the gaps be-
tween the large ones. We show that by taking this phe-
nomenon into account and relaxing the assumption that
the rolling phase is homogeneous, complete segregation
occurs when the small grains are rougher than the large
grains, and stratification occurs when the large grains are
rougher than the small grains, in agreement with experi-
ments. In these cases, our results are consistent with the-
oretical studies recently published by Makse, Cizeau, and
Stanley (MCS) [37-39], who proposed a modified version
of the BAG equations. MCS proposed a model valid for a
mixture of grains with very different size. They explained
the complete segregation phenomenon by predicting an
exponential behavior of the concentrations, and success-
fully reproduced the mechanism leading to stratification
as observed in the experiments.

The present article is organized as follows. In Section 2,
we review the theoretical formalism developed in [30-34].
In Section 3, we present our model of binary collisions
between one rolling grain and one grain at rest, and we
obtain the canonical model for surface flows of granular
mixtures. Section 4 describes the application of the model
to all possible cases, when the two granular species differ
in size and/or in surface properties. Then in Section 5, we
model the steady state filling of a two-dimensional silo by
a mixture of grains, and we discuss the predicted segre-
gation profiles according to the different composition of
the mixture. Finally in Section 6, we consider the case in
which the grains have a wide difference in size, in order to
describe stratification and complete segregation.

2 Theoretical formalism

The study of two-dimensional surface flows of granular
materials has progressed significantly with the works of
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BCRE [30,31] and Mehta et al. [32]. BCRE proposed a
set of variables and a set of coupled equations to de-
scribe two-dimensional granular flows for a pure species
of grains. Recently, BAG [34] generalized the BCRE for-
malism by considering a mixture of two granular species.
In the present paper, we describe this formalism for two
species. Following Bouchaud et al., we assume that there
is a sharp distinction between a static phase, where grains
at rest belong to the pile, and a thin rolling phase where
grains are not part of the pile but roll downwards on top
of the static phase (see Fig. 1). We call 0(z,t) the local
slope of the interface, and h(z,t) the height of the static
phase. These quantities are to be understood as an aver-
age over a certain coarse grain length on the surface of the
sandpile (larger than the size of the grains), where hydro-
dynamic equations are valid. For notational convenience
we do not consider the difference between the angle # and
its tangent

O(x,t) ~ —% . (1)

We call ¢, (z,t) the volume fractions of the two species of
grains in the static phase just below the interface (here the
index a denotes the grain species, and is equal to “1” or
“27). We have ¢1 + ¢2 = 1. We assume that both species
have a small difference in size, so that there is no seg-
regation inside the rolling phase, i.e., the rolling phase
is homogeneous in the vertical direction (this assumption
will be released in Sect. 6). We call R(x,t) the total thick-
ness of the rolling phase. We also consider two “equiva-
lent thicknesses” for the two species in the rolling phase
Ry (z,t) (i.e., the total thickness multiplied by the local
volume fraction of the « grains in the rolling phase at po-
sition z). The total thickness of the rolling phase is then
equal to

R(z,t) = Ry(x,t) + Ra(z,t). (2)

The equations describing surface flow of grains take into
account the fact that grains in the rolling phase move
downwards due to their weight, and collisions between the
rolling grains and the static grains induce exchanges be-
tween the two phases. The equation that describes the
exchange of grains between the two phases is

h = —(Ricou + Ralcon); (3)

where the dot denotes a time derivative, and Ra|coll the
exchange between the « grains in the rolling phase with
the static phase. Equation (3) can also be written for the
single species

(bah = _Ra|coll- (4)

The evolution equation for each species in the rolling
phase, taking into account the downhill convection of
grains due to gravity, is

OR,
Ox

Ry =v + Ra ot (5)
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Fig. 2. Diagram showing the different type of collisions be-
tween a rolling grain of type 1, and a static grains of type 1
or 2. ai: auto-amplification, x1: cross-amplification, bi: auto-
capture, z1: cross-capture.

where v is the convection speed of the rolling grains, which
may depend on the slope 6(z,t) and on the grain species.
However, we assume that the two species are mixed inside
the rolling phase; the convection speed v must be identical
for the two species. Moreover, in practice variations in the
angle 0 are small enough, so that the speed v can then be
taken as a constant.

3 Canonical model

We propose a microscopic model of the grain collisions,
that will allow us to calculate the exchange term Re|cou
as a function of 8, R, and ¢,. We calculate, in first order
approximation, the interaction term Rg|con by consider-
ing the binary collisions between one rolling grain and one
grain at rest on top of the static phase. Collisions between
three grains (or more) are less probable, and will be ne-
glected. We consider four types of collisions for a rolling
grain of type 1 (Fig. 2):

— Auto-amplification: another type 1 grain starts to roll.
This collision contributes with a term aq(6)¢1R1 to
R1|coll. This term is proportional to R; because all
type 1 rolling grains interact with the static phase due
to the fact that the rolling phase is thin. It is also
proportional to the concentration of type 1 grains in
the static phase, ¢1. The function aq(6) is called the
collision function for the auto-amplification of type 1
grains. This function is positive, has dimensions of a
frequency, and depends a priori on the angle 6. The
collision functions may also depend on the type of
species in the static phase that are in contact with the
grain about to roll; the rougher the neighboring grains,
the less chance for the static grain to start rolling, and
the smaller the value of a;. However, this neighbouring
effect is expected to be small compared to the varia-
tions of a; with respect to . In order to simplify, we
will neglect the neighbouring effect, and will consider
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that a; only depends on 6. The same approximation
will be used for all the other collision functions.

— Cross-amplification: a type 2 grain starts to move. This
collision contributes with a term 1 (6)p2R1 to Ra|coli-

— Auto-capture: the type 1 rolling grain is captured af-
ter a collision with a type 1 static grain. This process
contributes with a term —b;(0)¢1 Ry to Ri|colr-

— Cross-capture: the type 1 rolling grain is captured by
a type 2 static grain. This process contributes with
a term —z1(0)¢p2R1 to Ri|con. This cross-capture in-
teraction was not taken into account in the minimal
model [34]. It plays an important role when the grains
have different sizes, as will appear later.

Collisions where the rolling grain stops and simultane-
ously a static grain starts to roll are a limiting case be-
tween cross-amplification and cross-capture. The proba-
bility that these two collisions happen simultaneously is
low, and therefore we neglect this process.

When the colliding rolling grain belongs to the type
2 species, four similar binary collisions occur. We call the
corresponding collision functions as (), z2(0), b2(6), and
z2(0), which are all positive. Since increasing the slope
of the pile favors rolling, the amplification functions a,
and z, are increasing functions of #. Conversely, since
decreasing the slope favors capture, the capture functions
b, and z, are decreasing functions of 6.

It is now possible to write the expressions of the ex-
change term Ry |con in a matrix form. We define the col-

lision matriz M by [34]

(Rl'coll) _ M <R1> .
R2|coll R2
The previous microscopic description yields

N o= ((al —b1)p1 — 2102

(6)

a1

(az — ba)¢o — Z2¢>1) - (D

The elements Mg are determined by the concentrations
®a(z,t), and by the local angle 6(z,t) via the collision
functions.

Next we calculate the expressions of the collision func-
tions by doing a linear approximation around the angles
of repose. In order to do so, let us consider the quantity
E; defined as the total exchange (including capture and
amplification) between the static phase and the rolling
phase due to collisions originated by type 1 rolling grains
— similar definition can be provided for the type 2 rolling
grains, F>. A type 1 rolling grain can interact — via auto-
amplification or auto-capture — with other type 1 static
grains giving rise to a contribution (a3 — b1)¢1 Ry to Ei,
or it can interact — via cross-amplification or cross-capture
— with type 2 static grains giving rise to a contribution
(1 — 21)¢2R;1 to Ey. Then E; is given by

Ey = [(a1 — b1)¢1 + (x1 — 21)¢2|Ra
= (My1 + Ma1)R;.

102

(®)

Notice that F; contributes to R1 lcott via My1, and also to
R2|coll via Mo .
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In a model of a single species made of type 1 grains,
the exchange term would be equal to E; = [a1(0) —
b1(0))R1(z,t), and the angle 6 for which a; = b; would
correspond to the situation where there is no exchange of
grains between the static and the rolling phases. We call
this angle the angle of repose of the pure type 1 grains,
which we denote 6711, and it is the maximum angle below
which a rolling grain is converted into a static grain. In
general, the repose angle 6,, of the pure « species is the
angle at which the auto-amplification and auto-capture
functions intersect

aa(eaa> - ba(eaa>' (9>
Moreover, we will call the cross-angle of repose 6,3 the
angle for which the cross-amplification function equals the
cross-capture function

Ta(0ap) = 2a(bap)-

The angle 615 for the type 1 grains is defined by z1(612) =
z1(012), and corresponds to the angle of repose of a single
type 1 rolling grain moving on top of a surface made ex-
clusively of type 2 static grains [37]. One way to measure
experimentally the cross-angles of repose would be by glu-
ing grains of one species to an inclined plane and pouring
grains of the other species and measure the angle at which
grains stop to roll.

When the surface properties of the two species are not
very different, the two pure angles of repose do not dif-
fer very much. Moreover, when the size of the grains do
not differ much, the cross-angle of repose are also close.
In practice, the angle 6 remains close to the angles of re-
pose of the species and we can linearize the eight colli-
sion functions with respect to 8 to get a simple expression
for F4

(10)

By = [71(0 — 011)¢1 +72(0 — 012)p2] Ry,  (11)

where

Y1 = Opgar — Opb1, Y2 = Opz1 — Dp21. (12)
In order to consider the simplest case, we assume that all
the derivatives of the collision functions have the same

order of magnitude, i.e.

Opay ~ Ogx1 ~ —0Ogby ~ —0pz1, (13)
so that 71 ~ v2 =, and therefore
Ey =7[0 — 01(2)| Ra, (14)

where the angle 6;(¢2) is given by
01(¢2) = 611 + (012 — 011) . (15)

The constant v has the dimensions of frequency, and has
typical value v ~ 25 s~! [27]. Dimensional analysis show
that the order of magnitude of 7 is given by

vy ~wv/d, (16)
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where d is the typical size of the grain. The constant -~y
represents the frequency of interaction between a rolling
grain and the static phase. The larger the value of ~, the
more frequent the exchange between phases.

Equation (14) shows that 61 (¢2) is a cross-over angle;
E; describes capture of rolling grains (E7 < 0) when 6 <
61, and amplification of grains (Fy > 0) when 6 > 6. The
angle 01(¢2) for a mixture of grains plays the role of the
constant angle of repose 0y for a pure species of grains;
the angle 61 (¢2) is called the generalized angle of repose
for the type 1 species. When no type 2 grains are present
on the static phase (¢2 = 0), 01(¢2) (given by Eq. (15)) is
equal to the angle of repose 17 of the pure type 1 species.
When ¢- increases, the type 1 rolling grains interact more
frequently with type 2 static grains, and the generalized
angle of repose 0;(¢2) changes.

The generalized angle of repose was introduced by
MCS [37], who have shown that it has a key role in explain-
ing the segregation as well as the stratification of granu-
lar mixtures. MCS defined the generalized angle of repose
0a(¢g) of species a as a linear function of the volume frac-
tion ¢g and proposed the expression (15). In the present
paper we show that this expression can be derived, by us-
ing the binary collision model and a linear development
approximation. When it is possible, notations of reference
[37] are used in the present paper.

Making similar approximations, we get a simplified ex-
pression for the exchange Es due to collisions with type 2
rolling grains

Ey = [0 — 02(42)] R2, (17)

where

02(¢1) = O22 + (021 — O22) 1 (18)
is the generalized angle of repose for the type 2 species.

The generalized angles of repose quantify the degree
of interaction of the rolling species with the pile. If the
species « have a smaller generalized angle of repose for
any value of ¢4, then, when Ry = Rs, the « rolling grains
are less captured (or amplify more grains in the bulk),
than the other species. In order to quantify this behavior,
we define the difference

Y12 = 01(p2) — O2(1). (19)

In the general case, 112 is a function of ¢,. However in or-
der to simplify, in the following we will consider particular
situations where 112 is a constant that does not depend
on ¢a (ze 912 — 911 = 922 — 921).

It is now possible to write a simpler expression for the
collision matrix (7). Previous calculations for E, yield

N o= (7[9 — 01(¢2)] — 71(0) 2

e 2(0)$1 ) ’

Y[0 — 02(¢1)] — z2(0) 1
(20)
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where the cross-amplification functions can be written in
the following way

.771(9) = %(9 - 911) + Zo, x2(6) = .771(9) — Az1o.
(21)

Here xg and Azio are two constants of the model. We call
equations (20) and (21) the canonical form of the collision
matrix. This canonical form is general, and valid for any
mixture of two granular species. In practice, the grains
differ in size and in surface properties. Let us now see how
the canonical form of the collision matrix conveys these
differences.

4 Possible differences between
the granular species

4.1 Grains differing only in their size

Let us consider the case where we mix species of small
grains, denoted the 's’ species, with species of large grains,
denoted the I’ species, both species having similar densi-
ties and the same shape or roughness (in this case, indices
1" and '2’ are replaced by indices 's’ and l"). The size dif-
ference between the two species allows us to compare the
collision functions. A large grain more easily sets a small
grain into motion than the reverse, hence

zs(0) < x1(6). (22)

A small grain is more easily captured on a surface of large
grains than the reverse, then

21(0) < z5(0). (23)

Equations (22, 23) imply that the two cross-angles 6,3,
defined by equation (10), satisfy

015 < 0. (24)
The size difference between the two species does not allow
a comparison to be made between either the functions
a;(0) and a4(0) or between the functions b;(0) and bs(0).

However considering that the I’ and ’s’ species have
the same surface properties, we can obtain other inequal-
ities. In first order approximation, the probability that
an 's’ static grain is set into motion by an ’s’ rolling
grain is equal to the probability that an ’l’ static grain
is set into motion when it is collided by an ‘I’ rolling
grain. The two probabilities are approximately equal be-
cause in both collisions the two interacting grains have the
same weight, and because the two interacting surfaces are
identical. Hence we have

as >~ a; = a.

(25)

Similarly, the probability that a rolling grain is captured
by a static grain belonging to the same species does not
depend on the grain species being 's’ or 'l’, then

bs ~ by =b. (26)
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Fig. 3. Case A: grains differing only in their sizes (small type s
and large type [ grains). (a) Diagram of the collision functions.
(b) Diagram of the generalized angles of repose as a function
of the volume fraction ¢;. The angles of repose 65 and 6 for
the two pure species are equal. Due to the size difference, the
cross-angles of repose 0;; and 0, are different.

Equations (25, 26) imply that the two pure angles 6,4
(defined by Eq. (9)) satisty
01 = Oss. (27)
Thus, the present model shows that two granular species
with identical surface properties have also identical angles
of repose, as observed in experiments. Finally, the size
difference between the two species involved in collisions
yields
rs<a<x, 2z<b<z. (28)
We consider the simplest case by using the set of simplest
relations consistent with equations (28)
a=(zs+x)/2, b=(zs+2)/2. (29)
Equations (28) imply the following relations for the angles
of repose, as proposed by MCS [37]
els < oll = oss < esl~ (30)
The collision functions and the generalized angles of re-
pose 0;(¢s) and ;(¢;) arerepresented in Figures 3a and 3b.
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Fig. 4. Case B: grains differing only in their surface proper-
ties (rough type r and smooth type m grains). (a) Collision
functions. (b) Generalized angles of repose: due to the surface
differences the two angles of repose 0,5 and 6y of the pure
species are now different, but the cross-angles of repose are the
same due to the equal size of the grains.

Note that due to our assumptions (29), ¥ = 0s(é1) —
0:(ds) is a constant independent of ¢,. The angles of re-
pose 0, and 6;; of both pure species are equal due to
their equal shapes, but due to the size difference between
the particles we have 15 > 0 for any value of ¢; the I
rolling species amplifies more easily the rolling phase than
the s rolling species, because large grains are less easily
captured, and more easily set another grain into motion.
The larger the size difference between the two species, the
larger the value of 14 and the larger the strength of the
exchange processes. In our case, ¥ is a small constant
so that the linear development of the collision functions
remains valid.

4.2 Grains differing only in their surfaces properties

Let us now consider the case where we mix species of rough
grains, denoted the ‘r’ species, with species of smooth
grains, denoted the 'm’ species. The rougher the surface
of a grain species, the more efficient a collision between
two grains belonging to this species. Hence we have

am(0) < ar(0),  bm(6) < b.(6). (31)

Experiments show that granular species with the
smoother surface have also the smaller angle of re-
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pose: O < 0 [27]. This inequality is equivalent to the
condition

ar — A < by — by (32)
Thus the last inequality is an experimental constraint for
our model.

The different surface properties between the two
species does not allow a comparison to be made between
either the functions z,, and x, or between the functions
zm and z,. However, if we also assume that the v’ and 'm/
species have the same size, both cross-interactions corre-
spond to collisions where two grains of the same mass
interact via a rough surface in contact with a smooth
surface. In first order approximation, the probability of
a cross-interaction does not change if the two grains in-
volved in the collision are switched, hence

Zr ™ 2 = 2. (33)
Equations (33) imply

Orm = O (34)

Finally, the surface differences between the two species

involved in collisions yield

am < X < Qp, by <2z <by. (35)

We take the simplest relations consistent with equations
(35)

x = (am +ar)/2,

2= (bm +b)/2.  (36)

Equations (35) imply the following relations for the angles

Omim < Orm = Oy < Opr. (37)
The collision functions and the generalized angles of re-
pose 6, (ém) and 6,,(¢,) are shown in Figures 4a and 4b.
Here again ¥,..,, is a small constant due to our assumptions
(36) and due to the validity of the linear approximations.
Since m rolling grains are less easily captured, they am-
plify more easily the rolling phase than the r rolling grains.

4.3 Mixture of small rough grains
and large smooth grains

We denote “type 1” grains the small rough grains, and
“type 2”7 the large smooth grains (here we have 1 = s =,
and 2 = [ = m). The size difference between the two
species still yields equations (22) and (23), and the cross-
angles of repose verify 627 < 615. Moreover, the surface
differences still imply equations (31), and the angles of re-
pose verify 6ao < 6011. If the size difference is very small,
effects due to the surface differences are stronger, and we
get foo < 07 < B12 < #11. This case is close to the situa-
tion where grains differ only in their surface properties.
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collision functions

6,

0 1(p;

Fig. 5. Case C: mixture of small rough grains (type 1) and
large smooth grains (type 2). (a) Collision functions: when the
grains differ both in size and in shape, the eight functions are
distinct. (b) Generalized angles of repose.

However, when the size difference is more important,
we obtain a case close to the situation where the particles
differ only in their sizes. Then, we have (as postulated
in [37])

021 < 922 < 911 < 0127 (38)

and

1 <az <a <, 22<b2<b1 < z1. (39)

The collision functions and the generalized angles of
repose for this case are represented in Figures 5a and 5b.

4.4 Mixture of small smooth grains
and large rough grains

We denote “type 1”7 grains the small smooth grains, and
“type 2” the large rough grains (1 =s=mand2=1=r).
As explained previously, we have for the different angles
of repose

911 < 922, 921 < 912. (40)
We consider here the case when the difference in size is
small, and shape segregation effect is more important than
size segregation effect. Then in this situation, we have (see

Fig. 6b)

011 < 031 < 012 < O9s. (41)
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Fig. 6. Case D: mixture of small smooth grains (type 1), and
large rough grains (type 2) when the size difference is small.
(a) Collision functions. (b) Generalized angles of repose.

As shown in Figure 6a, the collision functions satisfy

a1 <1 <22 < ag, b1 < z9 < 21 < bs. (42)

5 Segregation in the filling of a silo
5.1 General equations

In order to describe the segregation between the two
species predicted by the present model, we study the case
of the steady state filling of a two-dimensional silo, which
is a simple geometry and has been the focus of experi-
mental studies by different authors [26—29]. Inside a two-
dimensional cell made of two vertical plates separated by
approximately 0.5 cm, a mixture of two different species
is poured with a constant in-going flux. Let us call the
horizontal axis the x axis. The cell is located between
0 < z < L, and the grains are poured at the point of
injection at © = L (Fig. 7). We focus on the steady state
filling; as the mixture is poured in the cell, the surface
of the pile rises uniformly without deforming, at a con-
stant speed w

oh

We review some results found for this situation with the
minimal model [34]. In the steady state filling, we have
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pouring point

><"

0 L

Fig. 7. Filling of a two-dimensional silo, in which a constant
flux of grains is poured. In the steady state, the surface of the
static grains rises uniformly, at the constant speed w.

R, = 0. Then equations (3) and (5), and the boundary
condition R(xz = 0) = 0, imply that the total thickness
R(z) of the rolling phase decreases linearly with respect
to the distance from the pouring point

w

R(z) = —x.

) (44)

The total exchange between the two phases Ry |coll+R2|w”
can be calculated as a function of the generalized angles
of repose, using the collision matrix (20). Then equation
(5) yields

—w =7[0 — 01 (p2)|R1 + [0 — O2(¢1)] Ra.

In this expression, the order of magnitude of the right
hand side is YR ~ Ywx/d, where v ~ v/d (Eq. (16)).
The ratio of the right hand side of (45) divided by its left
hand side is ~ ¢ /d. Thus, when = > d/v, the left hand
side can be neglected, and we get for the local slope 6

(45)

Ry Ry

=20 — 40 —. 46
1(¢2) 5 +02(62) (46)
In particular, in the steady state, the value of 0 lies be-
tween the two generalized angles of repose #; and 6. By
combining equations (4, 20, 46), we obtain the following
expressions of the volume fractions ¢, in the static phase

Rs Ry
= 1 _— —_
91 ( +512m1R1+x2R2> R’
R4 Rs
—(1ogp—1 )2 47
¢2 < 512 1R + $2R2> R’ ( )
where
§12 = 712 + Az2 (48)

is a constant in our model. We notice that the minimal
model of [34] consists of taking the cross-amplification
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functions constant independent on the angle, z1(f) =
x2(0) = m, and Ax;o = 0. With these approximations
the minimal model can be solved to obtain a closed form
for the concentrations and the rolling grain profiles.

Equations (47) show that segregation happens when
rolling grains stop on the static phase; the volume frac-
tion R, /R of the o grains in the rolling phase is differ-
ent from the volume fraction ¢, of the same species in
the static phase. Since the quantity R,/(z1R1 + z2R2)
is always positive, if {12 > 0 we obtain ¢; > R;/R and
¢2 < Ra/R; type 1 grains are captured more easily than
type 2 grains. Conversely, if £&12 < 0 we obtain ¢; < Ry /R
and ¢2 > Ra/R; type 2 grains stop more easily. This be-
havior induces segregation everywhere in the static phase;
the larger | &2 | the stronger the segregation.

For instance, let us consider the case where we pour
an equal volume mixture, Ri(x = L) = Ra(z = L). If
&12 > 0, we obtain at the top of the slope ¢1(x = L) >
¢2(x = L). Type 1 rolling grains stop more easily, and
the fraction of these grains decrease in the rolling phase
(R1 < Ry), while type 2 rolling grains will preferentially
stop at the bottom of the slope ¢1(z = 0) < ¢2(z = 0).
Thus, in this example, the static phase contains mostly
type 1 grains in its upper part, and type 2 grains in its
lower part.

In the lower part of the pile (z < L), it is possible
to quantify more precisely the segregation for any kind
of poured mixture. By doing a linear development of the
equations, we can look for a power law behavior valid at
the bottom of the slope, as suggested by the solution of
the minimal model [34]. If, for instance, we assume &5 to
be positive, we expect that R;/R tends to zero. We write
forx < L

R1 (a;)
R(z)

~ Az, (49)

where A and 7 are two positive constants. Then ¢
can be calculated in first order approximation with
equations (47)

b1 () ~ (1 + 52) Az, (50)

T2

When we substitute these expressions for R;/R and ¢
in the relation OR;/0x = w¢1 /v (obtained from Egs. (4,
5)), we obtain an equation whose compatibility confirms
that the type 1 species follows a power-law behavior at the
bottom of the slope. This equation also gives the value of
the exponent n

_ 12
1‘2(0 = 922)

Note that the exponent 77 depends on the granular species.
This power law behavior shows that our model predicts
continuous segregation; the concentrations of species vary
slowly in the container, both types of grains remaining
present everywhere. This continuous segregation corre-
sponds to what is observed in experiments, when the two
granular species do not have a wide difference in size [29].

: (51)
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Fig. 8. Case B: grains differing only in their surface proper-
ties. Concentration profiles (calculated numerically) during the
steady state filling of a silo. The segregation clearly appears at
x = L, where R,, = R, but ¢, < .

5.2 Segregation for the different mixtures

For the different mixtures of grains treated in Section 4,
the model predicts continuous segregation during the
steady state filling of a silo. In the case of grains differing
only in their surface properties, we have x, = z,, and

07’7‘ - emm

5 > 0.

&rm = Yrm + Az, = Y (52)

The sign of &, indicates that inside the static phase, the
rough grains are found preferentially at the top of the silo
(see Eq. (47)). In order to quantify more precisely the pre-
dictions of the model, we perform a numerical integration
of the equations of motion for this case. Figure 8 shows the
results calculated in the case of an equal volume mixture of
rough grains and smooth grains, R.(x = L) = Ry, (z = L).
For this simulation, we chose 6, = 49°, 0,,,, = 43°,
Yrm = 3°, and (0 = 6,.,) = 0.3757y. Figure 8 shows
the volume fractions ¢, (z) for 0 < z < L in the steady
state. Note that segregation clearly appears at x = L,
where R,, = R, but ¢,, < ¢,. Figure 8 confirms that
our model predicts a continuous segregation, and not a
complete one; ¢, does not fall suddenly at z = L/2, but
slowly decreases as x decreases. Similar profiles have been
recently obtained with numerical simulations, by using a
granular media lattice gas model to study the filling pro-
cess of a two-dimensional silo with inelastic particles dif-
fering in friction coefficients [40].

When the grains differ only in their size, a similar con-
tinuous segregation is found, with the smaller grains lo-
cated preferentially at the top of the pile. Thus our results
indicate that the roughest grains or the smallest ones are
segregated at the top of the pile, while the largest grains
or the smoothest ones are segregated preferentially at the
bottom. When we mix grains differing both in size and in
surface properties, a competition between size-segregation
and shape-segregation appears.
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Fig. 9. Case C: small rough grains (type 1) and large smooth
grains (type 2). Concentration profiles at the surface calculated
numerically in the steady state. The dotted line corresponds
to the fit to the analytical expression (50), valid at the bottom
of the pile.

For the mixture treated in Section 4.3 of small rough
grains and large smooth grains, the model predicts contin-
uous segregation with the rough and small grains found
preferentially at the top of the pile. This is the case of
strongest segregation found with the present model, since
both size segregation and shape segregation act simultane-
ously to segregate the small rough grains at the top of the
pile and the large smooth grains at the bottom. Figure 9
shows the volume fractions ¢, (x) calculated numerically
when an equal volume mixture of small rough (type 1)
grains and large smooth (type 2) grains is poured in the
silo. We set g = 0.4y, Az = —0.13vy, L = 100, and use
the collision functions shown in Figure 5. Figure 9 shows a
continuous segregation which is stronger than in the case
of grains differing only in their surface properties (case 4.2,
Fig. 8). At the lower end of the slope (z < L), we have a
complete purification of both species due to segregation;
R1(z)/R and ¢1(z) tend to zero. In that region, we can
fit the numerical solution with the analytical expression
equation (50) with n = 0.29.

The last case treated in Section 4 corresponds to a
mixture of small smooth grains and large rough grains.
The size difference is taken to be small, to allow for the
linear development of the collision functions. Thus shape
segregation is found to dominate over size segregation, so
that the smooth grains are found at the bottom. How-
ever, when the effect of size segregation is comparable to
the effect of shape segregation, the competition between
size and shape segregation gives rise to a different phe-
nomenon. Indeed, experiments show that we obtain ei-
ther stratification when the large grains are the rough-
est, or a complete segregation when the large grains are
the smoothest [26-29]. The theoretical model proposed in
the present article can explain both the complete segre-
gation and the stratification. These phenomena aredue to
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the type of segregation that appears directly inside the
rolling phase, as explained in the next section.

6 Complete segregation and stratification

So far we have treated the cases when the difference be-
tween surface properties and size of the grains is not too
wide, hence we could perform linear developments of the
collision functions around the region of interest. This sit-
uation gives rise to the continuous segregation patterns in
all the cases studied in the previous sections. When the
difference between the grains size is important, stronger
segregation effects are expected. According to experiments
[26-29], this occurs when p > 1.5, where p is the ra-
tio of the size of the large grains divided by the size of
the small ones. The size segregation is due to segregation
at the shear surface between the rolling and the static
phase [37], or it may already happen inside the rolling
phase [27,39]; small rolling grains tend to fall downward
through the gaps in between the large grains, so that they
form a sub-layer of small rolling grains underneath the
large rolling grains. This phenomenon is called “kinematic
sieving”, “free-surface segregation” or “percolation”
[23,24,27]. The large rolling grains are not in contact with
the bulk, and are captured after the small grains. The
percolation effect takes place inside the rolling phase if
its thickness is larger than (approximately) two or three
grain diameters. However, even for a thin flow, strong size
segregation occurs in the shear surface between the rolling
and static phase if the size difference between the grains
is wide enough. In both cases, the large rolling grains
are captured only after the small ones, and the collision
functions may take the forms proposed in [37] (see Fig. 4
of [38)]).

Here we use a suitable modification of the interaction
term, in order to take into account the segregation in-
side the rolling phase within the present formalism. We
replace Ry(z,t) in the definition of the interaction term
by Ra(z,t) exp[—ARi(x,t)/R(x,t)]. The exponential fac-
tor multiplying Ra(z,t) mimics the fact that the inter-
action of large rolling grains is screened by the presence
of small grains, so that large rolling grains Rs interact
with the grains at the surface of the static phase only
when Ry(z,t) < R(z,t)/A. The dimensionless parameter
A > 0 measures the degree of percolation [39]. We nu-
merically simulate this model using a mixture of grains
differing both in size and shape. When the large grains
are smoother than the small grains, we obtain a complete
segregation of the mixture (see Fig. 10a). The transition
zone between the two species at rest has a size which goes
approximately from a few mm to a few cm. When the
large grains are rougher than the small grains, Figure 10b
shows that we find stratification of the static phase. This
stratification results from the competition between size-
segregation and shape-segregation. In conclusion, when
our model includes the percolation effect, we are able to re-
produce the experimental observations obtained with par-
ticles of very different sizes [26—29]. Our results are also
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Fig. 10. (a) Concentration profiles obtained numerically show-
ing the complete segregation of a mixture of small rough grains
(type 1) and large smooth grains (type 2) when the percola-
tion effect is present. (b) Stratification of a mixture of large
rough grains (dark) and small smooth grains (grey), when the
percolation effect is included in the model.

consistent with the ones found by Makse et al. [37-39], to
whom we refer for further details.

7 Discussion

We have proposed an analytical model (called canonical
model) that explains the continuous segregation observed
during the filling of a silo, when the grains have a small dif-
ference in size. Our predictions could be precisely tested
by experimental measurements. When the two granular
species have a wide difference in size, we include, in the
canonical model, the percolation effect that appears di-
rectly in the rolling phase. The model is then able to re-
produce the complete segregation and the stratification
observed in experiments; it is also consistent with results
recently published by Makse et al. who described grains
with a wide difference in size.

The canonical model incorporates both differences in
size and in surface properties of the grains, and con-
tains several coupling parameters between the two granu-
lar species such as the cross-angles of repose, and the two
constants xo and Ax1s. In comparison, the minimal model
[34] is simpler than the canonical model since the minimal
model contains only one coupling parameter. However, as
a consequence, the minimal model cannot take into ac-
count a size difference between the particles.



T. Boutreux et al.: Surface flows of granular mixtures

In the present paper, we have applied the canonical
model to only one practical situation: the steady state
filling of a silo. This situation is interesting, since it has al-
ready been described experimentally by different authors.
Moreover, the present model for surface flows of granular
mixtures could be applied to many different situations.
In particular, the segregation that appears during thick
avalanches in rotating cylinders could be studied analyti-
cally; the results could be compared to the ones published
recently for a pure granular species [36,41].

This work has benefited from very stimulating discussions with
J.-P. Bouchaud, P. Cizeau, Y. Grasselli, H. J. Herrmann, E.
Raphaél, H. E. Stanley, and S. Tomassone. H. Makse thanks
BP for financial support.
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